

Observe that
$$\{\lambda_{2k+1}\}$$
 is declassing & $\lambda_{2k+1}> \perp \forall k$
while $\{\lambda_{2k+1}\}$ is increasing $A = \lambda_{2k} < 0 \quad \forall k$.
Let $Y_{k} = \inf\{\{\lambda_{n} : n \ge k\}\}$.
(ase t: k is even Claim: $Y_{k} = \lambda_{k}$
When $n \ge k$ is even, we have
 $\lambda_{k+1} \in \lambda_{n}$ since $\{\lambda_{2k+1}\}$ is increasing -
"When $n \ge k$ is odd, we have
 $\lambda_{k+1} < 0 < 1 < \lambda_{n}$.
Therefore, $Y_{k} = \lambda_{k+1}$ in this (ase
Case 2: k is odd. Claim: $Y_{k} = \lambda_{k+1}$.
First, we have $\lambda_{k+1} < 0 < 1 < \lambda_{k}$.
Mote that $Y_{k} = \min\{\lambda_{k}, Y_{k+1}\}$ and by (ase 1,
we have $Y_{k+1} = \lambda_{k+1}$ since ket is even.
Hence, $Y_{k} = \lambda_{k+1}$ when k is odd.
In conclusion,
 $Y_{k} = \begin{cases} \lambda_{k+1}, k \text{ is even } \\ \lambda_{k+1}, k \text{ is odd } \end{cases}$

• Therefore,
$$\lim_{k \to \infty} \inf f(x_n) = \sup f(x_n) = 0$$
. (Check.)
 $n \to \infty$ (check.)
• $\inf f(x_n) = x_2 = -\frac{1}{2}$.
Define $W_{k} := \sup f(x_n : n \ge k)$.
With $\sin \log n$ arguments, we have
 $W_{k} = f(x_{k}, k \text{ is odd.} = f(1+\frac{1}{k}), k \text{ is odd.}$
 $W_{k} = f(x_{k}, k \text{ is odd.} = f(1+\frac{1}{k}), k \text{ is odd.}$
• $\lim_{k \to \infty} \lim_{k \to \infty} \lim_{k$

Exercise:
Let
$$[x_n] \subset \mathbb{R}$$
 be positive. Suppose $\lim_{n \to \infty} \frac{d_{nn}}{d_n} = a$.
Show that $\lim_{n \to \infty} \frac{d_{nn}}{d_n} \leq a$.
Indeed. we have
 $\lim_{n \to \infty} \frac{d_{nn}}{d_n} \leq \lim_{n \to \infty}$

Itere we use the fact that lim C^h = 1 for some constant C>0. Since & is arbitrary, we have $\lim_{n} \sup_{n} \int_{-\infty}^{\infty} z_{n} = \lim_{n} \sup_{n} \frac{z_{n+1}}{z_{n}}.$